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Abstract. Programming bugs and flaws can have fatal consequences
for the security of cryptographic software and may allow an attacker to
bypass authentication, forge signatures, decrypt sensitive data, or even
completely reveal secret keys. Certain categories of bugs, such as subtle
carry-propagation flaws in large-integer or prime-field arithmetic carried
out by many public-key cryptosystems, manifest only under very specific
and, therefore, extremely rare input conditions, which makes them hard
to detect with conventional software testing methodologies. While there
exist a few papers that describe such Hard-to-Find Bugs (HFBs) and
study their security implications, a more comprehensive treatment and
systematization are still lacking. The present paper aims to fill this gap
and analyzes the challenges posed by HFBs in software implementations
of public-key cryptosystems. More concretely, we define and categorize
HFBs, provide a survey of HFBs that have been found in widely-used
open-source cryptography libraries (some of which remained undetected
for up to 10 years), and discuss the benefits and limitations of common
testing and prevention techniques, including differential testing, static
analysis, fuzzing, formal verification, and Known Answer Tests (KATs)
tailored to HFBs. Raising awareness of HFBs is important for software
developers and security auditors who implement and test cryptographic
algorithms for mission-critical systems where correctness and robustness
are paramount. By shedding light on subtle implementation flaws and
how to reduce their occurrence, this paper contributes to improving the
real-world security of public-key cryptosystems.

1 Introduction

Cryptographic algorithms are foundational to secure communication over the
Internet, safeguarding the confidentiality, authenticity, and integrity of sensitive
data. While many of the widely-used cryptosystems stand on a solid theoretical
foundation and have been scrutinized for many years, their security in practice
is intrinsically related to the correctness of the implementation [22]. Program-
ming errors and resultant defects (i.e., “bugs”) can be found in any non-trivial
software, and cryptographic software is certainly no exception [7]. According to
McConnell [24, Sect. 22], the “industry average experience is about 1-25 errors
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per 1000 lines of code for delivered software.” Since a software implementation
of a single cryptosystem, such as ECDSA, can consist of several hundred Lines
of Code (LoC), it is not surprising that a substantial number of bugs have been
found in cryptographic libraries [7]. The impact of a bug or flaw in software, in
general, and cryptographic software, in particular, can vary significantly. While
some bugs are benign and do not cause serious harm, others have catastrophic
effects and can even be responsible for a loss of life [34]. More specifically, when
it comes to cryptographic software, the immediate consequences of bugs/flaws
that slip through quality assurance (e.g., code auditing, testing) and end up in
production usually include the incorrect execution of a cryptosystem for certain
(potentially very rare) inputs and the leakage of sensitive information via side
channels. Indirect (i.e., further) consequences of the former can range from the
bypassing of authentication in TLS (e.g., Apple’s “goto fail” bug [22]) to the
forging of signatures (e.g., by exploiting a padding bug that breaks the collision
resistance of the signature’s hash function [25]) to the decryption of sensitive
data (e.g., by taking advantage of a modular reduction bug to leak the private
ECDH key of a TLS server [10]). In the worst case, a single bug can enable an
attacker to fully recover a secret key with little effort [14]. However, even if an
implementation of a cryptosystem is 100% functionally correct (i.e., produces
always a correct result if the input is valid and an error code otherwise), it can
still leak sensitive information, e.g., through small input-dependent variations in
execution time that could be exploited by a timing attack.

Two commonly-used techniques to discover programming errors and defects
are source-code reviewing (including auditing by external experts) and software
testing (resp., fuzzing). However, both are particularly challenging for crypto-
graphic software. To maximize efficiency, the performance-critical components
of cryptographic algorithms are usually written in Assembly language, which is
error-prone not only for the developers but also for reviewers and auditors. In
addition, the need for resistance against timing-based side-channel attacks adds
an extra layer of complexity, as it prohibits secret-dependent memory accesses
and conditional branches, respectively [21]. Furthermore, when a cryptographic
library aims to support different processor architectures, a number of separate
Assembly implementations have to be reviewed/audited, requiring intricate and
rare expertise. Cryptographic software also has a number of unique properties
with respect to testing or fuzzing that distinguish it from software in other do-
mains. Namely, certain classes of cryptographic software defects, such as subtle
carry-handling flaws [7], emerge only under highly specific and extremely rare
input conditions. A good example is the carry-propagation bug in OpenSSL’s
Karatsuba-based long-integer squaring studied by Weinmann [32]. This bug is
triggered with a probability of 2−64 on affected 32-bit platforms and 2−128 on
64-bit processors, respectively. While conventional testing techniques are vital
for basic correctness and regression checks, their odds of finding such an elusive
bug are practically zero. Thus, it is not surprising that this carry-propagation
bug was present in the OpenSSL code-base for 10 years [32], making it a prime
example of a Hard-to-Find Bug (abbreviated in the following as HFB).
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The main goal of this paper is to raise awareness of the existence of HFBs
and their implications among cryptographers on the one hand and software de-
velopers on the other, whereby we focus on public-key cryptographic algorithms
like RSA and Elliptic Curve Cryptography (ECC). These cryptosystems, due to
their reliance on costly mathematical operations (e.g., long-integer arithmetic in
RSA and finite-field computations in ECC), are especially susceptible to subtle
functional bugs and side-channel flaws. Such defects are a natural consequence
of inherent algorithmic complexity, sophisticated optimization, platform-related
constraints, and (micro-)architectural nuances of the target processor. Software
developers are often unaware of the specifics of cryptosystems and the aspects
that make cryptographic software unique. For example, even when a software
implementation of a public-key cryptosystem is fully functionally correct, it can
still contain an HFB and leak secret data, e.g., via some side channel or due to
bad randomness [22]. On the other hand, cryptographers often lack knowledge
of the complete spectrum of software testing and formal verification techniques
that can be used to tackle HFBs. While each of them has its own benefits and
shortcomings, the combination of testing (fuzzing) and formal verification can
reduce the number of HFBs that slip through and end up in production.

This paper provides a definition of HFBs, describes different characteristics
they share, and exemplifies these characteristics with a famous HFB that made
headlines world-wide, namely the Sony PlayStation 3 (PS3) bug [14]. We also
discuss the benefits and limitations of state-of-the-art software testing methods
(both generally and specifically in the context of HFBs), including differential
testing, static analysis, Monte Carlo testing, fuzzing, and Known Answer Tests
(KATs) tailored to the rare corner cases where HFBs commonly hide. Beyond
“detection and elimination,” an alternative way to mitigate HFBs is prevention
through formal verification of correctness [2,8]. We survey tools and techniques
for the formal verification of cryptographic implementations and highlight the
advantages of modern programming languages for building high-assurance soft-
ware. Another contribution of this paper is a collection of HFBs that have been
discovered in various open-source projects and their analysis and categorization
into six main classes of bugs: carry propagation flaws, mismanagement of state
or context, other implementation issues, incomplete input validation, erroneous
parameterization, and vulnerability to timing attacks. A more detailed version
of this bug collection, which covers 53 HFBs in total and also includes a small
source-code excerpt where each bug manifests, is available on GitHub [30]. The
GitHub repository also contains an extended 35-page version of this paper.

2 Hard-To-Find Bugs (HFBs)

In the context of software quality assurance, the term error generally refers to
a human mistake that produces an unintended or incorrect result. Errors can
occur in any phase of the development process, e.g., specification, design, imple-
mentation, testing, and maintenance. A defect is a deficiency or imperfection in
a software artifact that prevents it from satisfying the (intended) requirements
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or specification [24]. Hence, a defect is the consequence of an error, e.g., a false
specification due to a misinterpretation of a requirement or a flaw in the design
of the software. A bug is the manifestation of a defect and typically discovered
during the testing or operation of software artifacts. Bugs can affect any phase
of the software development process, from specification to maintenance, but we
focus primarily on implementation bugs in this paper. Having established the
basic terminology, we define a Hard-to-Find Bug (HFB) as follows.

An HFB is any kind of imperfection of a delivered cryptographic software
implementation that can potentially lead to a security vulnerability and
remains undetected by state-of-the-art testing techniques.

The word delivered emphasizes that HFBs are bugs in official software versions
or releases that made it to production systems, i.e., we explicitly exclude bugs in
alpha or beta software. Alpha/beta versions often come with critical bugs and
are intended for testers and early adopters to identify these issues.

An important category of HFBs consists of those that cause cryptographic
software to produce an incorrect result for at least one input combination. Such
input combinations are typically extremely rare, making these bugs difficult to
uncover through conventional testing or fuzzing. Even worse, incorrect outputs
of a cryptosystem can leak sensitive data (e.g., a secret key) to an attacker, as
was shown in [10]. However, not all HFBs manifest as incorrect outputs. Some
arise from low-level memory management issues, such as dynamically allocated
memory (using, e.g., mallloc in C) that is never freed. Although these bugs do
not affect functional correctness, they can still pose a security risk if sensitive
data, e.g., a secret key or a temporary value related to a secret key, remains in
memory and becomes accessible to an attacker1. Other HFBs stem from flaws
in (pseudo-)randomness generation, often referred to as “bad randomness.” The
security of many cryptosystems depends crucially on random numbers that are
unpredictable and uniformly distributed within a specified range; defects in the
generation process can have fatal consequences yet are notoriously difficult to
detect through standard testing. Timing vulnerabilities represent another class
of HFBs: even when outputs are fully correct, variations in execution time can
leak information about the secret key via side-channel attacks. These examples
illustrate that HFBs encompass a broad range of imperfections, including some
that do not affect functional correctness but still can undermine security.

Characteristics of HFBs. Most of the HFBs described in the literature and
in bug reports, change logs, mailing lists, and discussion forums of open-source
projects share one or more of the following properties.

1. Low Probability of Occurrence: An HFB manifests only under extremely rare
and highly specific conditions, such as unique input combinations, special
sequences of operations, or particular hardware or timing factors.

1 Note that our HFB definition does not imply the existence of an exploit; it suffices
when the bug has the potential to compromise security.
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2. High Complexity and Subtlety: An HFB often results from complex system
interactions, subtle hardware behavior, or some intricate algorithmic detail
(e.g., improper handling of edge cases).

3. Difficulty in Detection and Reproduction: Conventional testing techniques
struggle to identify HFBs, and without knowing “the trick” they are hard
to reproduce.

4. Cross-Disciplinary Nature: Addressing HFBs often requires expertise across
multiple areas, including software, hardware, and cryptographic theory, due
to their involvement in various layers of the system stack.

Subtle bugs that are hard to find do not only plague cryptographic software
but represent a massive challenge across essentially all segments of the software
industry. For example, Bressana et al. [9] discuss the difficulty of finding subtle
data plane bugs in networking hardware using their Portable Test Architecture
(PTA), which revealed hidden issues like throughput degradation under specific
traffic conditions. Although their research is on network devices, the discussed
challenges closely mirror those in cryptography: both fields are plagued by bugs
that only manifest under rare conditions, evading traditional testing methods.

2.1 HFBs in Public-Key Cryptography

Public-key cryptography involves costly low-level arithmetic operations, such as
exponentiation in a multiplicative group with an order of a few thousand bits
(e.g., RSA, Diffie-Hellman) or scalar multiplication in an additive group of an
order of a few hundred bits (ECC schemes, e.g., ECDH, ECDSA). The latter, in
turn, requires operations in a finite field, typically a prime field Fp, where p is
chosen to enable fast modular reduction. When implemented in software, these
operations are performed on multi-precision integers, which are arrays of words
or limbs whose length is determined by the wordsize of the target platform. As
discussed in the last section, public-key cryptosystems are prone to many kinds
of HFBs, including arithmetic defects (e.g., carry propagation issues, overflows
of words/limbs, sign handling lapses), flaws in the generation of pseudo-random
numbers, and vulnerabilities to side-channel attacks. The public nature of these
cryptosystems, allowing adversaries to craft malicious inputs and probe for bugs
without having privileged access, increases the risk that HFBs can be exploited
to compromise security. For example, in (EC)DH key exchange, a private key is
combined with a public key that may be maliciously crafted by an attacker to
trigger leakage of (parts of) the private key via an HFB [10].

Example: Sony PS3 Hack. A well-known example for an HFB is the bug in
ECDSA signature generation that affected the Sony PlayStation 3 (PS3) game
console and opened doors to widespread software piracy [14]. This bug allowed
an attacker to compute Sony’s private code-signing key from publicly available
signatures, thereby completely breaking the chain of trust of the PS3. With the
private key exposed, it was possible to sign arbitrary code as if it were official
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firmware, which made it relatively easy to create custom firmware and execute
unauthorized software, such as illegal copies of PS3 games.

Before explaining the bug and its implications in more detail, we first recap
on how ECDSA generates and verifies a signature for a given message m. From
a mathematical point of view, ECDSA operates in an elliptic curve (sub-)group
of prime order n with generator G. The signer has a key-pair (d,Q) where d is
an integer in the range of [1, n − 1] and Q = d · G is a point on the curve. To
obtain a signature for m, the signer computes the hash h = H(m) and chooses
a random nonce k ∈ [1, n− 1]. Then, the signer performs a scalar multiplication
to get a public nonce R = k ·G, extracts the x-coordinate rx of R, and derives
s = k−1(h + d rx) mod n. The signature of m is the pair (rx, s). To verify this
signature, one has to hash m and use the public key Q to check if rx matches
the x-coordinate of the point T = u1 ·G+ u2 ·Q, where u1 = h s−1 mod n and
u2 = r s−1 mod n. When several or many messages are signed using the same
private key d, the security of the ECDSA signature scheme critically hinges on
the nonces being unique, unpredictable, and uniformly distributed in the range
[1, n− 1]. Accidental nonce re-use can leak the secret key d.

Suppose two signatures are generated using the same nonce k, one for mes-
sage m1 with hash h1, and the other for m2 with hash h2. In this case, the two
signatures have the same rx coordinate, but different s values: s1 and s2. The
difference s1 − s2 = k−1(h1 + d rx) − k−1(h2 + d rx) = k−1(h1 − h2) mod n is
sufficient to get k = (h1 − h2)(s1 − s2)

−1 mod n and, then, recover the private
key from either signature by computing, e.g., d = (s1 k − h1) r

−1
x mod n. Sony’s

flawed ECDSA implementation used a fixed nonce k (or insufficiently random
nonces), producing signatures with the same rx for different messages. Hackers
collected these signatures and recovered the private key d, which enabled them
to sign unauthorized firmware and bypass all security controls.

Cryptanalytic attacks enabled by “bad randomness” (including a complete
lack of randomness) have a long history in public-key cryptography and broke
the security of many real-world systems. Possible causes for randomness errors
range from a lack of implementer awareness to defects in an operating-system
or hardware component that is involved in the generation of (pseudo-)random
numbers. Modern cryptographic libraries come with their own Pseudo-Random
Number Generator (PRNG), which is initially seeded, and then occasionally re-
seeded, with “true” (in terms of non-deterministic) randomness collected by the
operating system from hardware events, interrupts, or special CPU instructions
like rdseed. Most standalone ECDSA implementations, on the other hand, use
randomness provided by the operating system’s PRNG (e.g., /dev/urandom in
Linux) to avoid the hassle of maintaining a PRNG state. Both approaches can
succumb to implementation errors. For example, a bug in the OpenSSL crypto
library of Debian Linux distributions from 2008 (CVE-2008-0166) crippled the
seeding of OpenSSL’s PRNG, making it predictable and causing many of the
generated cryptographic keys to be weak. Commenting out two lines of source
code reduced the entropy of the seed to the process-ID, i.e., only 15 bits. More
recently, it became known that AMD Zen5 CPUs are affected by a flaw in the
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rdseed instruction, which is used by many operating systems as one of several
sources of entropy. Under certain conditions, rdseed returns the value 0 more
often than true randomness would allow and still signals success by setting the
carry flag to 1 (CVE-2025-62626). A different kind of mistake, often committed
by inexperienced developers, is to use a PRNG that is not suitable for crypto-
graphic purposes. A typical example in the context of the Java language is the
generation of ECDSA nonces with the java.util.Random class instead of the
java.security.SecureRandom class. The former employs a non-cryptographic
PRNG based on a linear congruential formula with a period of 248.

Overall, the ECDSA bug in Sony’s PS3, and similar bugs due to “bad ran-
domness,” aligns well with the characterization of HFBs outlined earlier:

1. Low Probability of Occurrence: Depending on the defect in the generation
of (pseudo-)random numbers, a nonce re-use may happen only after a large
amount of signing operations (e.g., 248 when java.util.Random is used as
PRNG to obtain nonces).

2. High Complexity and Subtlety: The nonces for ECDSA signatures have to
be unique, unpredictable, and uniformly distributed. Even small deviations
may be exploitable and facilitate key recovery [3], making nonce generation
a challenging task. In addition, from a purely algorithmic point of view, an
ECDSA signature generated with a re-used nonce is still a correct signature
(in the sense that the verification yields the correct result).

3. Difficulty in Detection and Reproduction: Conventional testing frameworks
for ECDSA check for functional correctness, but are (normally) not able to
detect accidental nonce misuse caused by PRNG flaws. While an extension
of testing frameworks to catch duplicated nonces is certainly possible, the
probability of finding a duplicate can be extremely low and depends on the
properties of the defect in (pseudo-)random number generation.

4. Cross-Disciplinary Nature: The generation of (pseudo-)random nonces is an
intricate problem as it requires expertise not only in cryptography, but also
in operating systems (e.g., entropy collection, reseeding strategies) and even
hardware (e.g., failure modes of entropy sources). This task is further com-
plicated by the fact that many relevant implementation details, such as the
post-processing/whitening of entropy, are often poorly documented or even
completely opaque, especially in closed-source operating systems.

2.2 Exploitability and Impact

The exploitability of an HFB depends less on how often (or rarely) it manifests
under benign conditions and more on whether an adversary is able to drive the
execution into the HFB’s “triggering region” and observe a usable output. In
public-key cryptography, attackers often have direct control over certain inputs
(e.g., chosen messages, public keys, input encoding), which enables systematic
exploration of edge cases that are practically unreachable by arbitrary/random
inputs. Equally important is observability: many HFBs become exploitable in
practice only when their outputs/effects are externally visible (e.g., in the form
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of signatures, accept/reject decisions, detailed success/error codes, measurable
timing differences, protocol abortions, system crashes). Finally, exploitability is
amplified by repeatability; if a bug can be triggered in a deterministic fashion
or with a certain probability under repeated trials, an attacker can accumulate
evidence and/or reduce uncertainty through statistics. We propose to assess the
exploitability of an HFB by considering the following aspects.

1. Adversarial control: Can an attacker directly choose or otherwise influence
inputs and/or parameters? Is the execution environment remote or local?

2. Signal strength: Does the HFB produce a clean, low-noise “signal” (e.g., an
incorrect result that is public) or only a weak side channel requiring a large
number of samples (e.g., a minimal timing bias)?

3. Trigger reliability: Is the HFB’s triggering condition deterministic, stateful
(i.e., requiring a sequence), or purely probabilistic?

4. Trial or query effort and post-processing complexity: What is the expected
number of trials/queries to get the desired “signal” (online complexity) and
how costly is the post-processing, e.g., to extract a secret key from a given
set of noisy timing measurements (offline complexity)?

As outlined before, an HFB can be simultaneously rare in normal operation
yet highly exploitable in adversarial settings. The impact of an exploit can be
classified according to the severity of the resulting vulnerability, which enables
developers to prioritize fixes based on potential damage. Such a classification is
beneficial for a better understanding of the importance and urgency of actions
for remedy. Aspects to consider for impact classification include:

1. Security implications, roughly ordered by severity: (a) full key compromise
(log-term key vs. short-term key, authentication key vs. encryption key), (b)
forgeability or authentication failure, (c) loss of confidentiality without full
key compromise (e.g., plaintext recovery), (d) other security/integrity issue
(e.g., denial of service, protocol downgrade, policy bypass).

2. Exposure duration: Time between the release of the software containing the
HFB and the public disclosure of the bug.

3. Remediation effort: Difficulty of bug-fixing (i.e., patch deployment) and the
revocation and/or update of compromised keys.

4. Scale: Number of affected systems before/after the release of a patch.

3 Cryptography Testing Techniques

This section provides a structured analysis of existing software testing methods
and evaluates their suitability to uncover HFBs. In contrast to formally verified
implementations, which can guarantee the absence of certain HFBs (as will be
discussed in the next section), no single testing approach is universally effective
across cryptosystems. We assess different testing methods, including differential
testing, static analysis, Monte Carlo tests, fuzzing, and known answer tests, on
their efficacy for the detection of HFBs. Based on this assessment, we describe
a unified framework for robust cryptographic testing.
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3.1 Differential Testing

Differential testing applies identical inputs to multiple independent implemen-
tations of a procedure or function to find inconsistencies. Discrepancies in the
outputs indicate potential bugs caused by errors in arithmetic operations, the
handling of parameters, or edge-case logic. This approach is primarily suitable
to identify hard-to-find bugs in complex systems, e.g., advanced cryptographic
schemes or protocols, where exhaustive specification-based testing may not be
practical due to the vastness of input spaces. In the context of public-key cryp-
tography, differential testing is applicable for deterministic operations, such as
RSA decryption, RSA/ECDSA signature verification, static (EC)DH, and the
validation of TLS certificates [11]. For example, the testing of RSA decryption
consists of feeding identical ciphertexts and keys into different implementations
and checking for consistency in the obtained plaintexts.

Limitations. Differential testing is able to detect bugs by comparing multiple
implementations (without requiring a formal specification), assuming that two
or more independent implementations are unlikely to share the same flaw. While
it can spot basic flaws, it is less suited to detect elusive bugs that occur only in
very rare edge cases, such as HFBs. Instead, differential testing is more useful
for confirming bugs once discrepancies arise and to identify buggy code sections
by comparing intermediate results. Furthermore, differential testing can not be
(straightforwardly) applied to probabilistic operations, such as RSA encryption
or signing, as it would require controlling or recording randomness.

3.2 Static Analysis

Static analysis refers to a range of techniques that analyze source code, byte-
code, or binaries without execution to spot potential errors, vulnerabilities, and
inefficiencies. These methods range from simple approaches, such as linting and
type checking, to advanced techniques, e.g., abstract interpretation, translation
of source code to mathematical models, proof-oriented equivalence checking.

In cryptographic software, static analysis plays a key role in the verification
of security properties. Expressive specification languages like Cryptol can be
used to describe cryptographic algorithms in a rigorous way and translate them
to Satisfiability Modulo Theories (SMT) formulas, often reducing subproblems
to SAT/bit-vector queries, which enables automated correctness proofs. Special
tools like ct-verif focus on the verification of constant-time execution, while
BinSec can detect vulnerabilities in compiled cryptographic binaries.

For example, Amazon Web Services (AWS) uses Cryptol as a specification
and verification platform to translate cryptographic functions to SMT formulas
for analysis by solvers. An important application of this approach is the formal
verification of AWS s2n, an open-source TLS implementation that emphasizes
simplicity and speed. Thanks to Cryptol and associated tools, it was possible
to identify and mitigate potential vulnerabilities, such as timing side-channel
attacks in the s2n HMAC implementation, prior to deployment [12].
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Example: Cryptol for RSA-PSS signature generation. Given a message
m or its hash h = Hash(m), an RSA-PSS signature is, in essence, computed as
s = (EMSA(h, salt))d mod N , where EMSA is a probabilistic encoding method
for h using a random salt. A static analysis of RSA-PSS can ensure that the
encoding (including sub-operations like padding and mask generation) and the
modular exponentiation are implemented correctly. With help of an appropriate
tool, both a high-level specification and low-level implementation of RSA-PSS
are translated into SMT formulas. The static analysis verifies the equivalence
between the specification and the practical implementation for all inputs in the
modeled domain. A discrepancy indicates a potential bug in, for example, the
modular arithmetic, bit-manipulation (i.e., padding or encoding), or edge-case
handling. The following Cryptol specification represents RSA-PSS signing:

1 rsaSign: {n} (fin n) => [n] -> [HLen] -> [SLen] -> [n] -> [n]

2 rsaSign d h salt N = modExp (EMSA ( h, salt )) d N

Here, d, h, salt, and N are a private exponent, a hash, a random value, and an
RSA modulus, respectively, while modExp stands for a modular exponentiation
and EMSA is the PSS encoding from RFC 8017. The Galois Software Analysis
Workbench (SAW) is able to translate both the Cryptol code and a low-level
implementation in, e.g., C or Java into SMT formulas. An SMT solver, such as
Z3 or CVC5, then attempts to prove that this implementation adheres to the
mathematical definition. The solver does this by: (a) encoding exponentiation
and arithmetic constraints as bit-vector logic; (b) checking that the computed
signature is always valid under all possible inputs; (c) finding counterexamples
if an invalid transformation exists. The counterexamples, provided only in case
the SMT solver detects a discrepancy, help to identify potential bugs related to
incorrectly implemented arithmetic or incorrect padding/encoding.

Limitations. Static analysis can provide strong functional assurance (and, in
some tools, constant-time execution guarantee), but its conclusions are only as
reliable as the specification and the abstraction model used for verification. In
particular, properties like randomness quality (entropy, bias, conditioning) and
other statistical behaviors are difficult or impossible to capture in SMT-based
equivalence proofs and typically require a complementary empirical validation
with the help of dedicated statistical test suites, such as the tests described in
the NIST special report 800-22 [27]. Finally, solver-based proofs may not scale
smoothly to large, highly-optimized code bases without careful modularization
and well-chosen invariants.

3.3 Monte Carlo Testing

Monte Carlo testing is a randomized testing technique that evaluates software
by sampling inputs from a chosen probability distribution and checking if the
executions satisfy expected properties. Unlike deterministic tests that execute
a fixed (i.e., limited) set of hand-chosen cases, Monte Carlo testing can explore
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large input spaces (e.g., millions of cases) relatively quickly and may, thus, be
able to reveal failures occurring only under particular input combinations.

When applied to cryptographic software, Monte Carlo testing usually draws
random, but valid, inputs (e.g., keys, plaintexts, messages, nonces) and checks
algorithm-specific invariants, such as consistency of RSA or ECDSA signature
generation/verification (i.e., verify(sign(m)) = m), symmetry of ECDH shared
secret keys (i.e., a · B = b · A, where A = a ·G and B = b ·G), and correctness
of RSA encryption/decryption round-trips (i.e., decrypt(encrypt(x)) = x). The
distribution of input values can be uniform for wide coverage or biased toward
boundary conditions (e.g., values near 0 or p− 1 in ECDSA and ECDH, carry-
propagation boundaries, or exceptional operand encodings) in order to increase
the likelihood of triggering subtle arithmetic and parsing defects.

Limitations. While Monte Carlo testing is self-contained (i.e., does not need
any other implementation for reference) and may allow one to execute millions
of test cases in a reasonably short time, it can still not provide a completeness
guarantee. Extremely rare bugs, e.g., an HFB with a probability of 2−32 or even
less, may remain undetected without highly targeted test-case generation.

3.4 Fuzzing

A fuzzer is an automated tool for “stress-testing” a program by executing it on
a large number of randomized test cases drawn from an extended input space
that covers also invalid, malformed, or out-of-specification inputs. Fuzzing can
detect many kinds of defect, such as input-buffer overflows and other memory-
access errors (if the fuzzer is equipped with static analysis tools, e.g., address
sanitizers), incorrect input parsers, missing/insufficient input validation, and so
on. These defects manifest not only via an incorrect result or output, but also
through crashes, assertion violations, memory-safety errors, or other abnormal
behavior. The strategy modern fuzzers adopt to produce pseudo-random inputs
can be mutation-based (i.e., existing inputs are perturbed, e.g., by flipping bits
or via heuristics), generation-based (i.e., inputs are constructed from grammars
or models [19]), coverage-guided (i.e., inputs that explore not-yet-covered code
paths are prioritized, e.g., AFL [33]), and differential (i.e., identical inputs are
compared across different implementations to detect inconsistencies [31]).

In cryptographic realms, fuzzing is highly valuable for assessing robustness
and error handling under incorrect or mis-formatted inputs. Public-key libraries
expose many attacker-controllable parsing/decoding surfaces, e.g., ASN.1 and
DER objects, X.509 certificates, PEM encodings, representations of points on
an elliptic curve, signature/ciphertext formats, protocol messages. Fuzzing can
probe how implementations react to NULL pointers, invalid length fields, non-
canonical encodings, illegal points/scalars in ECC, malformed public keys, and
unspecified parameter sets, and whether such inputs trigger unexpected results
or undefined behaviour. Unlike Monte Carlo tests, fuzzing deliberately expands
the input-space to inputs that violate syntactic or semantic constraints.
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Example: OSS-Fuzz. A well-known example of industrial-strength fuzzing is
OSS-Fuzz [15], an open-source framework developed by Google (in cooperation
with the Core Infrastructure Initiative and the OpenSSF) to continuously fuzz-
test open-source software. Launched in 2016, OSS-Fuzz has helped identify and
fix over 10000 vulnerabilities and 36000 bugs across 1000 open-source projects
(as of August 2023). Among those were hundreds of cryptography-related bugs
found in major libraries like OpenSSL, LibreSSL, GnuTLS, libgcrypt, NSS, and
Crypto++. For example, in 2017, OSS-Fuzz discovered multiple vulnerabilities
of critical severity in GnuTLS, including CVE-2017-5334, a memory corruption
caused by a double-free bug in the X.509 certificate parsing routine. This bug is
exploitable from remote via a specifically crafted X.509 certificate that contains
a Proxy Certificate Information extension and could, in the worst case, allow an
attacker to crash an application using GnuTLS.

Limitations. Many functional HFBs are semantic (e.g., subtle arithmetic de-
fects) and do not manifest as a crash, hang, memory leak, or other unexpected
behaviour; without strong oracles (reference models, invariants, or differential
checks), fuzzing may miss such flaws even if it executes the relevant code. An
other limitation is that detecting common side-channel vulnerabilities, such as
key-dependent execution times or memory access patterns, requires specialized
measurement and analysis beyond normal fuzzing, and often calls for dedicated
tools. Finally, most modern security protocols are stateful (e.g., handshakes in
TLS, especially in the case of a renegotiation), whereby “interesting” states can
only be reached with sequences of well-formed messages, which requires special
fuzzers that are protocol/state-aware rather than purely input-centric [13].

3.5 Known Answer Tests (KATs)

KATs are an essential tool for validating the correctness of a software function
(or a full program or system) by checking whether it reproduces a set of known
input-output pairs (“test vectors”) generated with a reference implementation
or specification. Such test-vectors, along with meta-data, are normally stored in
hex-format in special KAT files. Unlike differential testing, KATs neither need
an “on-the-fly” generation of (pseudo-)random numbers for input data nor the
execution of other implementations for output-checking. KAT-based testing is
very easy to automate and provides strong regression protection: once a bug is
fixed, the corresponding vector is kept to prevent a re-introduction. KATs also
support portability (they can find architecture/compiler-dependent deviations
in an effective way) and continuous integration (fast pass/fail oracles).

KATs for cryptographic software can serve different purposes, one of which
is to determine the correctness of an implementation and its compliance with
standards. For example, the NIST provides KAT collections for this purpose as
part of their Cryptographic Algorithm Validation Program (CAVP). A second
purpose of KATs is to detect HFBs via special test vectors targeting defects in
parsing, arithmetic, and boundary handling that may hide in rare edge cases.
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Example: Wycheproof. Wycheproof [16], originally developed by Google, is
an open-source cryptographic test suite providing KATs to trigger subtle, real-
world implementation pitfalls, with emphasis on rare edge cases and historical
bug patterns. Whenever a new critical bug or vulnerability in a cryptographic
library is reported, corresponding test cases are added to Wycheproof to catch
this specific bug and prevent it from appearing in other libraries. Wycheproof’s
test functions were initially written in Java and later ported to Go, though the
test-vectors themselves are language-agnostic [16]. We provide a C-port of the
public-key test functions in Wycheproof along with this paper to facilitate the
testing of C-based libraries. This port is available on GitHub [30] and enhances
the accessibility of Wycheproof without altering its core methodology.

Limitations. Despite their value, KATs are inherently incomplete as they can
not cover the full input space: passing a finite set of vectors does not imply the
correctness for all inputs. KATs can miss defects that require a specific internal
state, long execution history, or extremely rare operand patterns. Even KATs
specifically tailored to HFBs, such as Wycheproof, can only find already known
bugs, i.e., bugs that have been publicly disclosed.

3.6 Framework for Cryptographic Testing

Given the rarity and subtlety of HFBs, an effective testing environment has to
deliberately target the very specific execution conditions where such bugs often
hide. We propose a 3-layered approach combining deterministic, statistical, and
dynamic techniques, each optimized for HFB discovery.

– Layer 1: HFB-tailored KATs. KATs represent the most precise layer of the
framework and check an implementation using curated input-output pairs
aimed at triggering historical or structurally plausible HFBs. Unlike generic
KATs, HFB-specific test-vector suites like Wycheproof deliberately include
malformed or non-canonical inputs, and boundary values to cause overflows
or carry-mispropagations in multi-precision arithmetic.

– Layer 2: Monte-Carlo testing with biased distributions. While KATs are an
effective tool to detect known HFBs, they fail to uncover previously unseen
flaws. Monte-Carlo testing can address this gap using (valid) inputs drawn
from deliberately biased distributions that concentrate probability mass on
carry-propagation boundaries, near-0/near-p values in finite-field and group
operations, edge-case encodings and borderline valid points or scalars, and
atypical but still standards-compliant domain parameters. Such systematic
testing of functions around arithmetic or structural “danger zones,” where
HFBs naturally arise, increases the chance of triggering unknown defects.

– Layer 3: Continuous coverage-based fuzzing. This layer ensures robustness
and covers not only the core cryptographic operations but also “peripheral
functions,” which are often complex and can contain many execution paths
(e.g., X.509 parsing). Fuzz-testing is especially effective at catching HFBs
related to input validation, encoding/decoding, and error-handling.
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4 Verified Cryptographic Implementations

Even the most advanced testing regime can not guarantee that a cryptographic
software implementation is bug-free. Formal verification can come to the rescue
and further improve correctness and security by providing strong (in the sense
of mathematically grounded) assurances. In this section, we delve into formal
verification methods and the utilization of modern programming languages like
Rust and Jasmin to achieve high-assurance cryptographic software.

4.1 Formal Verification of Cryptographic Software

Formal verification applies mathematical logic to rigorously prove that a given
implementation adheres to formally specified correctness and security features
across all possible executions. Unlike conventional testing, which only inspects
a finite subset of possible inputs, formal verification provides global guarantees
by exhaustively analyzing every possible execution path. This process ensures
the absence of flaws, such as arithmetic errors, incorrect memory handling, and
logic inconsistencies, that could compromise security [8].

The verification procedure begins with the formal specification of a crypto-
graphic function f : X → Y and its desired properties. Taking RSA encryption
as a simple example, correctness is typically expressed as

∀(pk, sk),∀m ∈ M, Dec(sk,Enc(pk,m)) = m. (1)

This property, a global invariant, has to hold under all conditions. Verification
tools like Coq, EasyCrypt, and Tamarin Prover translate both the formal
specification and an actual software implementation into logical representations
(based on first or higher-order logic) and attempt to establish their equivalence
through automated theorem proving or model checking [2,4,6].

In addition to cryptographic algorithms, formal verification techniques have
also been extensively applied to various security protocols, ensuring properties
such as confidentiality, integrity, and authenticity. One common approach uses
the symbolic Dolev-Yao model, which abstracts the cryptographic primitives as
perfect black boxes while modeling adversarial interactions. Tools such as Pro-
Verif and Tamarin Prover automate the verification by analyzing protocol
logic to detect vulnerabilities. For example, ProVerif has been instrumental
in verifying the security of some TLS 1.3 draft variants, identifying weaknesses
and validating subsequent security enhancements [5].

Challenges and Limitations. Despite its strengths, formal verification faces
some challenges. The high complexity of cryptographic schemes and protocols
may lead to state-space explosion, making an exhaustive analysis computation-
ally expensive. In addition, ensuring that a formal model accurately represents
a real-world implementation is critical, as discrepancies can enable undetected
vulnerabilities. Furthermore, formal methods struggle to capture side-channel
attacks and compiler-introduced optimizations (e.g., vectorization), which calls



Hard-to-Find Bugs in Public-Key Cryptographic Software 15

for complementary empirical validation techniques, such as differential analysis
and fuzz-testing [8]. In summary, while formal verification is a powerful tool to
prove the correctness of an implementation, it is most effective in combination
with empirical testing to achieve comprehensive security validation.

4.2 Memory Safety and Type Safety

Memory safety is paramount in software since vulnerabilities can lead to severe
security breaches. A recent information sheet published by the NSA mentions
that a significant portion of software vulnerabilities, namely around 70%, stem
from memory safety issues in languages like C, C++, and Assembly [26]. The
NSA recommends adoption of memory-safe programming languages to mitigate
these risks, particularly in security-critical domains.

Rust is considered as candidate due to its robust memory safety guarantees
and performance capabilities. Rust’s ownership and borrowing system prevents
common memory errors such as null pointer dereferences, buffer overflows, and
data races. This is crucial for cryptographic operations, where any unintended
memory access can impair security. Formally, the Rust borrow checker ensures
that, for any memory state M, a Rust function f will execute safely:

∀M, BorrowCheck(f,M) = safe. (2)

This guarantee is crucial for cryptographic implementations, where unintended
memory access can lead to security breaches. Furthermore, Rust’s type system
enforces that operations are performed on compatible types, which reduces the
likelihood of logical errors within cryptographic algorithms. Low-level libraries
like subtle facilitate the development of constant-time code, essential for pre-
venting timing attacks by ensuring that its operations (e.g., conditional moves
and selections, comparisons) have no data-dependent timing variations. Several
cryptographic crates, such as ring [29], rustls, and RustCrypto, leverage the
memory-safety and type-safety features of Rust. Alternatives like Go sacrifice
performance for garbage collection, making them less suitable for applications
with low-latency or real-time requirements.

Rust typically exhibits a slight performance penalty compared to C code in
cryptographic primitives, but nonetheless remains competitive with aggressive
optimization. Benchmarks, such as those for implementations of AES, indicate
that Rust approaches C’s performance, with any overhead largely coming from
higher-level abstractions rather than intrinsic limitations [28]. In contrast, C’s
minimalism usually provides an advantage in resource-constrained settings like
embedded systems [20]. While C excels at low-level efficiency and binary code-
size, Rust’s richer abstractions, simplified memory management, and extensive
libraries can inflate size and complexity if unoptimized, though its optimization
potential occasionally surpasses that of C by leveraging advanced integration
across function and library boundaries. In addition, Rust supports formal veri-
fication through tools like Libcrux (a cryptographic library integrating verified
artifacts via hacspec for correctness and security proofs) and hax (a toolchain
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to translate Rust into formal languages, e.g., Coq and F*, for security-critical
applications) [23,17]. These capabilities are absent in C since the C ecosystem
lacks direct verification support. Thus, selecting between Rust’s safety and C’s
raw performance requires a careful trade-off analysis.

4.3 Low-Level Optimization and Verification

Jasmin [1] aims to bridge (high-level) cryptographic specifications and verified
Assembly implementations through a certified compiler (jasminc) and formal
verification in EasyCrypt. Its core syntax mirrors low-level control flow while
enabling mathematical reasoning about correctness and side-channel resistance
of an implementation. The methodology to verify code is as follows.

1. Modeling: Translate the Assembly code to Jasmin (this preserves low-level
optimizations).

2. Annotation: Add pre-conditions, post-conditions, and loop invariants in the
form of EasyCrypt predicates.

3. Equivalence checking: Use the CryptoLine toolchain to prove equivalence
between the Jasmin code and the reference models via algebraic predicates
(e.g., mont asm(x) ≡ mont ref(x) mod p).

4. Compiler certification: Rely on the correctness of the jasminc compiler to
ensure that the generated Assembly code matches Jasmin semantics.

This approach combines automated SMT solving (for range checks) and inter-
active theorem proving (for modular equivalences), which allows for verification
of both arithmetic correctness and side-channel security. Using single-precision
modular reduction for lattice-based cryptography as example, we demonstrate
how to employ Jasmin for two critical tasks: ensuring constant-time arithmetic
and proving equivalence between optimized code and reference models.

Verified Modular Reduction. Consider Montgomery’s reduction technique
for a prime modulus p, where R = 264 > p and p′ = −p−1 mod R. The Jasmin
implementation computes Mont(x) = (x + (x · p′ mod R) · p)/R, which always
has to satisfy Mont(x) ≡ x · R−1 mod p and 0 ≤ Mont(x) < 2p. Below is the
Jasmin code in assembly-optimized form with annotations for verification.

1 fn montgomery (uint64 x0, x1) -> (uint64 r) {

2 %rax = x0

3 mulx %rax , %rdx , %rax # x * p’ (low)

4 mulx p, %rdx , %rax # (x * p’) * p

5 addc %rax , x0, %rax # x + (x * p’ mod R) * p

6 adc %rdx , x1 , %rdx

7 shr $64 , %rax , %rdx # >> 64 (division by R)

8 assert @rpre (x0 + x1*2^64 < 2^128);

9 assert @rpost (result == (x0 + x1 *2^64)*R^{-1} mod p);

10 return %rdx

11 }
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The assert clauses specify a pre- and post-condition. EasyCrypt proves the
equivalence between this code and the mathematical specification via symbolic
execution and modular arithmetic lemmas. The jasminc compiler guarantees
“constant-timeness” by rejecting branching on secrets.

Jasmin remains very relevant today, playing a crucial role in post-quantum
cryptography (especially lattice-based schemes) and growing its impact beyond
integer arithmetic. For example, it turned out to be useful in uncovering issues
in an implementation of the Falcon signature algorithm with emulated floating-
point arithmetic. Namely, Jasmin helped verify a problem in the multiplication
function where intermediate products are zeroized prematurely, which violates
IEEE 754 rounding rules [18]. The verification process revealed that, while 692
out of 2048 FFT constants could trigger incorrect zeroization, the impact was
mitigated in practice due to lower bounds on intermediate values.

In summary, the combination of formal verification techniques with modern
programming languages designed for safety and performance, such as Rust and
Jasmin, offers a robust foundation for the development of secure cryptographic
implementations. Rust’s guarantees of memory and type safety, and Jasmin’s
support for low-level optimization and formal verification, enable developers to
write cryptographic software that is efficient and provably secure. Using these
methods—optionally complemented by the testing framework described in the
previous section—represents the current “best practice” for the implementation
of cryptographic software.

5 HFBs Collection

As mentioned at the end of Sect. 1, this paper is supplemented by some online
resources, in particular a collection of HFBs that have been discovered in real-
world cryptographic software, including established libraries like OpenSSL. The
HFB collection is publicly available on GitHub [30]. At the time of writing this
paper, the GitHub repository contained data on more than 50 HFBs, which we
collected from numerous open-source projects by studying bug reports, revision
histories, discussion forums, mailing lists, research articles, results from large-
scale testing/fuzzing initiatives (e.g., Wycheproof, CryptoFuzz), databases like
CVE, and various other online resources. Most of the bugs slipped through the
testing regime applied by the corresponding projects, and many actually ended
up in production. However, not all of these HFBs led to serious vulnerabilities
because their impact is often mitigated by system redundancies or the absence
of single-point-of-failure dependencies.

This section provides a brief overview of the information about each HFB
contained in the repository. The HFBs are summarized in six main Markdown
files, roughly corresponding to six main categories of bugs as follows.

– CARRY PROPAGATION.md: Mishandling of carry or borrow bits (resp., chains
of carries or borrows) in multi-precision integer arithmetic.

– CRYPTO STATE.md: Incorrect updates to a (secret-dependent) program state
or context of a cryptosystem or protocol.
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– IMPLEMENTATIONS.md: Deviations from formal mathematical or algorithmic
specification (other than carry-propagation flaws).

– INPUT VALIDATION.md: Incorrect (incomplete) validation of inputs that are
invalid, malformed, or otherwise manipulated.

– PARAM HANDLING.md: Incorrect validation or handling of domain parameters
(including encoding/decoding errors).

– CONSTANT TIME.md: Secret-dependent branches or memory access patterns
that thwart constant-time execution.

Each bug contained in the repository is documented via the following basic
format: (1) Specification: description of the bug’s context and affected software
component(s); (2) Defect: the exact defect caused by the bug; (3) Impact: the
consequences of the defect, especially in terms of cryptographic correctness and
potential security risks; (4) Code Snippet: an excerpt of the source code where
the bug manifests. This structured documentation helps to better understand
the nature of HFBs, trace their origins, and identify patterns that can improve
future testing and verification efforts. Some examples of HFBs are described in
the full version of this paper, which is publicly available on GitHub in the same
repository [30] as the collection of HFBs.

5.1 Categorization of HFBs

We group the HFBs into six major categories that recurred across many of the
affected cryptographic software projects. Each class captures a distinct failure
mode, i.e., a different way the underlying cryptographic guarantees fail. There
exist, however, some overlap cases where a bug fits in two categories, e.g., when
a bug causes an erroneous computation and also enables a timing attack.

Carry-Propagation Flaws. These bugs arise when carry-bits or borrow-bits are
not propagated properly across the words/limbs of multi-precision integers and
hide in functions for arithmetic in a prime field or multiplicative group, such as
addition, subtraction, multiplication, and squaring, usually including reduction
modulo a prime p. Moreover, auxiliary operations like the conversion between
full and reduced-radix representation and the final conversion of field-elements
into canonical form can be affected. Because triggering inputs often sit at word
(resp., limb) boundaries or have highly-specific values (e.g., near 0 or p), these
bugs can easily escape conventional software tests.

State or Context Mismanagement. Here, the implementation maintains a state
or a context that governs the basic properties and behavior of a cryptographic
algorithm (e.g., context of nonce-generation for ECDSA, configuration flag in
ECDH indicating whether or not a key can be re-used) or protocol (e.g., state
of a TLS session renegotiation), but the state is not initialized and/or updated
properly. The resulting failure can be sporadic, manifesting only under specific
input sequences or renegotiation patterns, and present in a wrong output, the
execution of an exception handler, or abnormal program termination.
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Incorrect Implementation. These bugs cause an implementation to deviate from
the mathematical or algorithmic specification. A common root-cause are flaws
in arithmetic operations, such as exponentiation, scalar multiplication, addition
and doubling of elliptic-curve points, and their “low-level” modular operations
(other than carry-propagation issues). They can yield wrong results for a small
subset of inputs, e.g., acceptance of a carefully-crafted adversarial signature.

Missing or Insufficient Input Validation. Input parsers and API front-ends fail
to thoroughly check sizes, lengths, encodings, required parameters, or specific
bounds (e.g., ASN.1/DER fields, maximum message sizes). Other examples are
non-canonical (or otherwise invalid) exponents or scalars, and group elements
(points) of low order. The consequences can range from an overread/overwrite
of input buffers to acceptance of ill-formed inputs that should be rejected.

Insecure Domain Parameters. An implementation erroneously accepts insecure
or invalid domain parameters (e.g., subgroup generators of wrong order, “prime
fields” whose cardinality is actually not a prime) or interprets the parameters
inconsistently across different configurations or code paths. Such inconsistencies
are always problematic in heterogeneous environments where different libraries
interoperate, and can enable attacks through subtle parameter misuse.

Timing-Attack Vulnerabilities. They are caused by secret-dependent branches
(e.g., if-then clauses in exponentiation, scalar multiplication, or modular arith-
metic) or secret-dependent memory-access patterns (e.g., table lookups).

5.2 Data Collection and Statistics

Collecting, categorizing, and analyzing HFBs discovered in real-world crypto-
graphic software provides insights on subtle implementation pitfalls and traps
that even experienced developers may fall into. Apart from the documentation
of each HFB, we also generated some statistics, which we hope turn out to be
useful when tackling the question of why and how HFBs arise.

For each bug, a statistical record containing the following information was
assembled (see file HFB.csv in the GitHub repository [30]): (1) ID : The unique
identifier for the bug, which can be a CVE number or a specific project-related
identifier like a Git commit-ID; (2) Category: A high-level categorization of the
bug, such as “Carry”, “State”, or “Timing”, based on the six HFB categories
outlined in the previous subsection; (3) Language: The programming language
of the affected implementation, e.g., “Assembly” or “C”; (4) SubType: A more
granular classification of the bug, such as “Montgomery Squaring” for an issue
in a function for Montgomery squaring; (5) Impact: A description of the bug’s
immediate effect(s), such as “Incorrect result”, “Memory corruption”, or “Side-
channel”; (6) Severity: A numerical value indicating the severity of the bug on
a scale from 1 to 10, based on, e.g., CVE severity scores.

A (preliminary) analysis of the statistics we collected about the 50+ HFBs
contained in our GitHub repository yields the following observations:
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1. Complexity of Assembly: A disproportionately large share of bugs occurred
in hand-written or tool-generated Assembly code, whereby readability and
maintainability were often sacrificed for performance.

2. Prevalence of carry-propagation flaws: Bugs caused by the mis-propagation
of carry/borrow bits are among the most common, highlighting that multi-
precision arithmetic operations are error-prone, in particular when they are
aggressively optimized for speed.

3. Cross-platform inconsistencies: Slight differences in compiler behavior, the
supported instruction set(s) of the CPU (e.g., BMI2, ADX), or endianness
caused bugs that remained undetected in single-target test environments.

6 Conclusions

In this survey paper, we delivered a thorough examination of HFBs in crypto-
graphic software, with a specific emphasis on public-key cryptosystems. These
subtle bugs pose a number of unique challenges to the security and robustness
of cryptographic software due to their low probability of occurrence, high com-
plexity, and resistance to detection by standard testing methods. Our analysis
underlines the urgent need to tackle these elusive bugs and further investigate
the vulnerabilities and attacks they enable.

We systematically evaluated a spectrum of software testing methodologies
tailored to uncover HFBs, including differential testing, static analysis, Monte
Carlo testing, fuzzing, formal verification, and KATs. Each methodology offers
distinct advantages: differential testing excels at spotting inconsistencies across
different libraries; static analysis provides rigorous defect detection and ensures
properties like “constant-time” execution; Monte Carlo testing offers statistical
input coverage; fuzzing reveals robustness issues with malformed inputs; formal
verification delivers strong mathematical assurances of correctness; and KATs
(exemplified by tools like Wycheproof) serve as an essential baseline validation
by testing against known HFBs and various edge cases. Our accompanying C-
port of Wycheproof makes its extensive KAT-collection available for platforms
that are not supported by Go, most notably embedded devices.

To advance HFB detection, we proposed a test framework that integrates
KATs, Monte Carlo testing, and continuous fuzzing. This approach combines
deterministic, statistical, and dynamic testing benefits, empowering developers
to bolster the security of their cryptographic software effectively. However, this
may still not be sufficient for extremely critical software, which should also be
mathematically guaranteed though formal verification.

A key contribution of this survey is the structured collection of real-world
HFBs, carefully categorized to illuminate their highly diverse nature and aid in
mitigation efforts. We hope this collection will serve as a vital resource for the
cryptographic community, offering real-world examples that highlight common
pitfalls and reinforce the necessity of specialized testing. By documenting these
bugs—ranging from carry propagation flaws to constant-time failures—we aim
to improve testing strategies and prevent recurring vulnerabilities.
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