Hard-to-Find Bugs in a Post-Quantum Age

Matteo Steinbach, Peter B. Rgnne, and Johann Grofsschidl

DCS and SnT, University of Luxembourg,
6, avenue de la Fonte, L.-4364 Esch-sur-Alzette, Luxembourg
matteo.steinbach.pro@gmail.com
{peter.roenne, johann.groszschaed1}@uni.lu

Abstract. The transition to Post-Quantum Cryptography (PQC) re-
places familiar primitives with theoretically secure but implementation-
ally immature algorithms built on structured lattices and polynomial
rings. This shift introduces subtle implementation defects—Hard-to-Find
Bugs (HFBs)—that can cause catastrophic failures while evading con-
ventional testing. We show that the HFB profile of PQC differs fun-
damentally from classical cryptography: carry propagation bugs, com-
mon in classical schemes, are nearly absent, while timing side-channels
in polynomial arithmetic (e.g., KyberSlash) and precision divergences in
floating-point operations in Falcon dominate. To address this new at-
tack surface, we present a systematic taxonomy of PQC-specific HFBs
and wycheproof-pqc, an open-source framework extension that uses tar-
geted Known Answer Tests to target elusive bugs and the documentation
of 15+ vulnerabilities in major open-source PQC implementations, pro-
viding a caution for securing the next generation of cryptography.

Keywords: Public Key Cryptography - Hard-to-Find Bugs - Post Quan-
tum Cryptography - Software Testing - Known Answer Tests

1 Introduction

Cryptographic software is foundational to digital security, ensuring confidential-
ity, authenticity, and integrity in modern communication systems. The security
of these systems, however, relies not only on sound theoretical constructions but
also on the correctness and robustness of their implementations. Subtle and elu-
sive defects, termed Hard-to-Find Bugs (HFBs), can undermine cryptographic
guarantees by causing rare but catastrophic failures such as incorrect verifica-
tion, exploitable side-channel leakage, or even private key exposure. This paper
extends earlier work EI, where we formally defined HFBs, highlighted their sig-
nificance, and classified over 50, with a particular focus on methods for testing
and verifying cryptographic software. In this paper, we extend that foundation
by concentrating on the unique challenges of identifying, analyzing, and mit-
igating HFBs in implementations of standardized and pre-standardized post-
quantum cryptography (PQC). Specifically, we examine lattice-based schemes

! Previous paper on classic HFBs available here: |https://github.com/mattc-try/
wycheproof-c/README.md

https://github.com/mattc-try/wycheproof-c/README.md
https://github.com/mattc-try/wycheproof-c/README.md

2 M. Steinbach et al.

(ML-KEM, ML-DSA, and FN-DSA), hash-based schemes (SLH-DSA), and code-
based schemes (HQC no FIPS standard name yet).

Contributions This paper makes the following contributions:

1. Taxonomy of PQC-specific HFBs: We identify and systematize vulner-
abilities into classes of defined HFBs.

2. Analysis of specific failures: We reproduce and document concrete fail-
ures, such as Falcon’s acceptance of mutated signatures due to floating-point
inconsistencies, and highlight their security implications.

3. Tailored Known Answer Tests (KATs): We extend the Wycheproof
methodology to PQC, generating adversarial test vectors that expose elusive
bugs.

4. Mitigation strategies: We propose countermeasures for each class of vul-
nerability, and good secure implementations practices.

5. Practical artifact: We release wycheproof-pgc, an open-source repository
for testing PQC implementations.

Paper Structure Section [2| formalizes our threat model and definitions. Section
situates our work in the context of prior testing frameworks and PQC imple-
mentation studies. Section [4] presents where PQC could potentially fail creating
HFBs. Section [f] reports experimental results and reproduced failures.

Research Questions This work addresses the following questions:

1. RQ1: How do the mathematical and algorithmic properties of PQC schemes
lead to new categories of hard-to-find bugs compared to classical cryptogra-
phy?

2. RQ2: What systematic methodologies can effectively detect, classify, and
reproduce these PQC-specific HFBs?

3. RQ3: How can KATs and adversarial vectors be leveraged to close gaps
left by conventional conformance and fuzzing tests, thereby ensuring robust
PQC implementations?

2 Definition and Threat

Definition 1 (Hard-to-Find Bug). An HFB is an implementation defect
that:

1. manifests only under rare inputs, execution orders, hardware/compiler set-
tings, or environmental conditions;

2. can violate cryptographic guarantees (e.g., cause over-acceptance, leak secret
bits, or corrupt ciphertexts); and

3. is unlikely to be found by standard conformance tests or lightweight fuzzing.

A more detailed definition is provided in Appendiz[4]

Hard-To-Find Bugs in Post-Quantum Cryptography 3

Security Risks of HFBs The elusive nature of HFBs makes them valuable to
adversaries. Exploitation often requires carefully crafted inputs or sequences
that trigger rare conditions, yet once triggered, an HFB can compromise core
cryptographic guarantees. For example, a rounding divergence in floating-point
Gaussian samplers may lead to biased signatures, while malformed but accepted
encodings may bypass integrity checks. Importantly, HFBs are not only acci-
dental: they could also be maliciously introduced. A subtle branch misprediction
leak or deliberately weakened parser check, invisible under standard tests, could
remain undetected for years before being exploited.

Threat Unlike classical cryptography, which has benefited from decades of refine-
ment and accumulated expertise, PQC is comparatively immature. Its algorithms
rely on novel mathematical structures—such as polynomial rings, structured lat-
tices, and large linear codes—that differ fundamentally from classical number-
theoretic primitives. This novelty, combined with a lack of specialized testing
tools and limited implementation experience, creates fertile ground for subtle
HFBs. These bugs are particularly interesting as they may remain dormant for
long periods, evading conventional validation while still being exploitable.

Deployment Pressures The risk is exacerbated by the accelerated standardiza-
tion roadmaps for PQC, notably NIST2025 [23| and European comission [2]
for pqc which target deprecation by 2030. Engineers—often without deep cryp-
tographic backgrounds—are required to implement and deploy new primitives
rapidly across software and hardware platforms. This combination of urgency,
novelty, and immaturity increases the probability that HFBs will persist in
widely deployed libraries. Moreover, the geopolitical landscape underscores the
risk: algorithms standardized and certified in one jurisdiction may contain de-
fects that are practically undetectable, manifesting only under astronomically
rare conditions (e.g., once in 254 executions). Such difficulty in detection mo-
tivates some countries to develop independent standards and implementations,
relying on their own experts and resources to reduce exposure to potential hidden
defects.

3 Related Work

The landscape of cryptographic implementation testing and vulnerability anal-
ysis has evolved significantly, yet substantial gaps remain in addressing PQC
unique challenges. This section critically examines existing approaches across
three key domains: systematic cryptographic testing frameworks, side-channel
detection methodologies, and post-quantum implementation security initiatives.

Systematic Cryptographic Testing Frameworks Google’s Project Wycheproof pro-
vides adversarial test vectors for classical algorithms (RSA, ECDSA, ECDH,
AEAD, etc.), uncovering 40+ vulnerabilities across libraries [7]. Its scope, how-
ever, is limited to classical primitives and attacks (e.g., invalid curves, biased

4 M. Steinbach et al.

nonces) and does not address PQC-specific issues such as NTT implementa-
tions, Gaussian sampling, or non-canonical encodings.

During standardization, NIST offered only basic KATs for functional verifica-
tion [4], omitting adversarial and misuse testing [16]. As a result, several flawed
implementations persisted through multiple evaluation rounds.

Automated Side-Channel Detection CipherH is the state-of-the-art in automated
side-channel detection, combining taint tracking with symbolic execution to iden-
tify ciphertext-dependent leaks [11]. Applied to RSA and ECDSA in major li-
braries, it revealed 236 vulnerabilities within 28 CPU hours, showing better
scalability than traditional static analysis.

However, CipherH targets classical cryptographic patterns and does not cap-
ture PQC-specific behaviors such as NTT reductions, discrete Gaussian sam-
pling loops, or floating-point rounding effects. Addressing these would require
new taint rules and constraint models.

Other tools, such as HACL* and Jasmin, offer formal verification but re-
quire full re-implementation in domain-specific languages, limiting their use for
existing C/C++ PQC and highly optimized code [9].

Post-Quantum Implementation Security Initiatives The EU’s PQCRYPTO project
(2015-2018) advanced PQC through over 130 publications, 22 NIST submis-
sions, and reference implementations including the pgqmé4 framework [18]. While
it noted timing and sampler leakage issues, its implementation security analysis
was fragmented and lacked systematic taxonomies for PQC-specific HFBs [31].

The community-driven PQClean project has become the main effort to im-
prove implementation quality [16]. Continuous integration testing across 17 NIST
schemes exposed widespread flaws such as memory errors and API violations.
However, PQClean mainly addresses general software robustness rather than
subtle PQC-specific HFBs like floating-point precision drift, polynomial timing
inconsistencies, or sampling deviations.

NIST’s PQC evaluation emphasized theoretical cryptanalysis and only docu-
mented implementation attacks reactively (e.g., KyberSlash, template, and fault
injection) rather than pursuing systematic HFB detection [4].

Crritical Gaps and Research Positioning Mathematical Foundation Analysis: Nei-
ther Wycheproof nor CipherH provides systematic analysis of how PQC’s un-
derlying mathematical structures (polynomial rings, lattice geometry, discrete
distributions) can create implementation vulnerabilities distinct from classical
cryptography.

PQC-Specific Vulnerability Taxonomies: While PQClean has improved gen-
eral software quality, no existing work provides comprehensive taxonomies specif-
ically for PQC HFBs that exploit the mathematics-implementation interface.

Our research directly addresses these limitations by providing the first sys-
tematic framework for identifying, classifying, and detecting hard-to-find bugs
that arise specifically from the mathematical properties and implementation
constraints of PQC systems.

Hard-To-Find Bugs in Post-Quantum Cryptography 5

4 Mathematical Foundations and PQC-Specific HFB
Manifestations

The transition from classical to PQC represents a fundamental shift in mathe-
matical foundations, with profound implications for implementation security and
HFB manifestation patterns. Classical cryptosystems—RSA, ECDSA, and re-
lated schemes—rely on number-theoretic problems involving large-integer arith-
metic in cyclic groups and finite fields. In contrast, post-quantum cryptosystems
derive security from diverse mathematical structures including lattice problems,
coding theory, multivariate systems, and isogeny-based constructions.

This mathematical divergence creates distinct HFB profiles. As established in
our previous work, HFBs in classical cryptography most frequently involve carry
propagation during multi-precision arithmetic operations. However, carry prop-
agation is much less frequent in PQC software, compared to more than 30% in
classical systems. This radical reduction stems from fundamental mathematical
differences in operand structure and arithmetic domains.

The Absence of Carry Propagation in PQC: Carry propagation bugs arise from
the sequential processing of multi-precision integers in classical cryptography.
Consider RSA modular exponentiation: computing ¢ = m¢ mod n requires han-
dling integers of size |n| = 2048 bits or larger, implemented using multi-limb
representations where carries must propagate across limb boundaries:

22048

Classical: Z,, with n ~ = multi-limb arithmetic = carry propagation

PQC: R, = Z,[X]/(X™ + 1) with ¢ < 2'® = single-limb coefficients

=no cross-coefficient carries

In lattice-based cryptography, operations occur in polynomial rings R, =
Z4|X]/(X™ + 1) where the modulus ¢ is typically small (¢ = 3329 for Kyber,
g = 8380417 for Dilithium, [24]25]). Coefficients remain bounded within [0, ¢—1],
eliminating the need for carry propagation between polynomial coefficients. Poly-
nomial multiplication in R, involves coefficient-wise operations modulo ¢, fun-
damentally avoiding the multi-precision arithmetic that characterizes classical
cryptosystems.

Hash-based schemes such as XMSS and SPHINCS+ [1,26] avoid carry prop-
agation because their security relies on cryptographic hash functions

H:{0,1}" = {0,1}™

implemented as fixed-size Boolean circuits. Operations like XOR, AND, and
modular addition over a fixed word size w € {32,64} are inherently bounded,
preventing variable carry chains. Similarly, code-based schemes such as McEliece
[19,21] operate over finite fields Fy, where addition and multiplication are alge-
braic operations (e.g., XOR, AND, or polynomial arithmetic) that are carry-free
by construction. In both cases, the arithmetic structure guarantees deterministic,
bounded operations without cross-term carry propagation.

N

6 M. Steinbach et al.

4.1 Lattice-Based Cryptography: Where Mathematical Complexity
Creates HFBs

Lattice-based schemes, including NIST standards ML-KEM (Kyber), ML-DSA
(Dilithium), and FN-DSA (Falcon), form the core of PQC |[3]|. Their security
relies on structured lattices implemented via polynomial arithmetic in quotient
rings, creating a distinct attack surface for HF Bs, primarily timing side-channels,
floating-point inconsistencies, and logical flaws.

4.1.1 Timing Side-Channels in Polynomial Arithmetic Constant-time
execution is critical for cryptographic code, yet the complex arithmetic in lattice
schemes creates subtle opportunities for timing leaks.

(a) Conditional Reductions in NTT Operations. Lattice-based schemes operate
in polynomial rings of the form R, = Z,[X]/(X™ + 1), where polynomial mul-
tiplication is accelerated by the Number Theoretic Transform (NTT). The core
NTT "butterfly" operation usually contains a conditional modular reduction:

(u,v) = (a+wb (mod q),a —wb (mod q)).

A naive implementation of this reduction introduces a data-dependent branch,
creating a vulnerability that leaks information about secret coeflicients.

int32_t t = a + omega * b;
if (¢t >= q) t -= q; // TIMING_GAP: Secret-dependent branch

Listing 1.1. Vulnerable conditional reduction in NTT.

The standard mitigation replaces this branch with constant-time arithmetic
using bitwise masking.

// Constant-time modular reduction

int32_t t = a + omega * b;

t -=q;

int32_t mask = t >> 31; // Arithmetic shift: -1 if t < 0, O
otherwise

5t += (q & mask); // Add q back if original t was < q

Listing 1.2. Constant-time modular reduction mitigation.

To verify the mitigation, one can measure the runtime variance of the NTT
kernel across a set of crafted inputs. Implementations where timing differs sig-
nificantly between inputs that trigger the reduction branch and those that do
not indicate remaining vulnerabilities.

(b) Variable-Time Division in Coefficient Compression. To reduce the size of
public keys and ciphertexts, Kyber compresses polynomial coefficients. This step
can inadvertently introduce a timing leak if it compiles to a variable-latency inte-
ger division instruction (idiv on x86). The KyberSlash [6] attacks demonstrated
this vulnerability allows for full private key recovery with only O(n) decapsula-
tion queries.

Hard-To-Find Bugs in Post-Quantum Cryptography 7

1// Compiles to a variable-time idiv instruction
>uintl6_t compressed = (coefficient * 16) / KYBER_Q;

Listing 1.3. Vulnerable use of integer division for compression.

This is mitigated by replacing division with a constant-time algorithm like
Barrett reduction given that it is implemented correctly.

1// Precomputed constant: (1 << 28) / KYBER_Q
>uint32_t t = (uint32_t)coefficient * BARRETT_MULTIPLIER;
suintl6_t compressed = t >> 28;

Listing 1.4. Constant-time Barrett reduction for compression.

Testing this mitigation can be done using specially crafted ciphertexts to
maximize timing variance in the division operation can be detected this way
also through KATs. The test fails if timing differences remain after rewriting the
code to be division-free.

4.1.2 Precision Divergence in Gaussian Sampling Discrete Gaussian sam-
pling is a fundamental building block of lattice-based signatures. While most
NIST lattice standards implement noise generation using integer-only samplers,
Falcon is unique in relying on floating-point arithmetic. In Falcon, signatures
require sampling from discrete Gaussian distributions over Z, defined as:

exp(—2?%/20?)
>oyezn exp(—y?/20%)

To achieve efficient sampling, Falcon employs fast Fourier transforms (FFT) and
double-precision floating-point approximations of the exponential function.

Dy o(x) = x e€Z.

Cross-Platform Precision Gaps. Floating-point units (FPUs) are not fully stan-
dardized across hardware architectures. For instance, differences between x86
(which supports fused multiply-add, FMA) and ARM architectures can lead
to slight variations in floating-point computations. Nguyen et al. (2023) report
that up to 7% of exponential evaluations may diverge between platforms [27].
Consequently, identical key—message pairs may yield distinct yet valid Falcon
signatures depending on the underlying hardware.

These precision discrepancies can have serious security implications. Potii et
al. (2024) demonstrated that collecting approximately 300,000 divergent signa-
tures is sufficient to recover the secret trapdoor with a success rate of 70-76% [29).
Similarly, the PQClean project identified inconsistencies in Falcon implementa-
tions on ARM platforms, where mutated signatures were incorrectly accepted,
further illustrating the practical impact of these cross-platform precision gaps [30].

Mantissa Leakage. Beyond rounding divergences, Falcon’s reliance on FFT-
based sampling introduces side-channel risks. Each complex coefficient

a; = u; +1iv;, u;,v; €R,

N

w1

8 M. Steinbach et al.

is stored in IEEE-754 double-precision format with a 52-bit mantissa. On AVX-
512 platforms, vectorized loads leak the Hamming weights of mantissas through
electromagnetic (EM) emissions:

E(t) « Z [HW (my ;) + HW(m, ;)],

where HW(+) denotes the Hamming weight. Correlation Power Analysis (CPA)
on such traces enables recovery of FF'T coefficients, which after inverse FFT and
lattice reduction reveal Falcon’s trapdoor polynomials (f,g) [13}/17].

4.1.3 Algebraic Correctness and Plaintext-Checking Oracles The al-
gebraic structure of the Ring Learning with Errors (RLWE) problem can be
exploited if an implementation’s logic reveals information about decryption cor-
rectness. During decapsulation, a received ciphertext is used to compute a mes-
sage, and correctness requires that the coefficients of the resulting error term are
small (i.e., |e;| < ¢/2). A vulnerable implementation might perform an early exit
after detecting an invalid coefficient, leaking timing information that an attacker
can use as a plaintext-checking oracle.

int is_valid = 1;
for (int i = 0; i < N; ++i) {
if (abs(coeffs[i]l) > (Q / 2)) {
is_valid = O0;
break; // TIMING ORACLE: Early exit

Listing 1.5. Vulnerable early-exit logic in verification.

Such an oracle can be used to recover a Kyber-512 key with just a few
thousand queries. The vulnerability is mitigated by ensuring all checks run in
constant time, removing any secret-dependent early exits. [6]

uintl6_t mask = 0;

for (int i = 0; i < N; ++i) {
// Bitwise OR accumulates failure flags without branching
mask |= (abs(coeffs[i]) > (Q / 2));

5}

s // Final check is based on the accumulated mask

int is_valid = (mask == 0);

Listing 1.6. Constant-time verification logic.

Testing for this vulnerability can be done by providing pairs of ciphertexts:
one valid and one intentionally failing the norm check on the first coefficient. The
test fails if the runtime difference exceeds a small, fixed threshold, indicating a
potential early-exit vulnerability. [22], [34].

Hard-To-Find Bugs in Post-Quantum Cryptography 9

4.2 Code-Based Cryptography: linear algebraic core, concrete
HFBs

Code-based cryptography derives its security from the hardness of the syndrome
decoding problem for linear codes. Formally, given a parity-check matrix H €
Fy**™ and a syndrome s € F*, the decoding problem asks for an error vector
e € F? with wt(e) < t such that He” = s”. This problem is NP-complete
[5] in the binary case and naturally extends to higher fields F,, a foundation
that underpins schemes such as Classic McEliece and HQC [28]. The canonical
McEliece-style encryption ¢ = mG + e is compact linear algebra over F, and, at
the algorithmic level, admits implementations without secret-dependent control
flow.

However, algebraic simplicity does not guarantee implementation safety: many
low-level building blocks (finite-field arithmetic, samplers, decoders, polynomial
kernels) are engineering artifacts whose concrete implementations can introduce
HFBs. Important implementation hotspots that have produced exploitable leak-
age include:

— Finite-field and polynomial arithmetic: implementations that rely on table
lookups, variable-latency instructions, or non-constant modular reduction
can leak through timing or memory-access side channels.

— Constant-weight (weight-t) samplers: naive samplers implemented with vari-
able rejection loops, data-dependent shuffles, or table draws reveal weight
patterns unless the sampler is written to enforce fixed iteration counts or is
masked.

— Decoder behaviour: iterative decoders (bit-flipping, belief propagation, or
hybrid concatenated decoders) whose iteration counts, branch behaviour, or
memory accesses depend on secret errors produce reaction channels that an
adversary can amplify (chosen-ciphertext strategies) to obtain oracles leaking
secret information.

— Structured code surfaces: use of quasi-cyclic or other structured codes re-
duces key sizes but introduces distinguishers and weak-key regions; these
structures broaden the HFB surface by enabling structure-specific attacks
and reaction amplification.

HQC provides concrete, instructive examples: timing/division oracles from non-
constant modular reductions, chosen-ciphertext amplification to steer decoder
failures, pre-reencryption side-channel oracles on the RM/RS path, and single-
trace SASCA results against RS syndrome kernels and polynomial multiplies.
These attacks demonstrate how finite-field / polynomial kernels and decoders —
though algebraically simple — create HFBs unless carefully hardened. [33]

The algebraic simplicity of code-based cryptography makes many building
blocks easier to reason about and harden, but does not obviate HFBs. HQC and
other real-world studies show that constant-time behaviour, sampler correctness,
decoder failure handling, and protection against reaction/fault oracles must be
engineered and verified end-to-end. Empirical case studies and KAT-style tests
are valuable complements to formal proofs for achieving robust implementations.

10 M. Steinbach et al.

Both were actively encouraged by the NIST in the course of their post-quantum
standardization projects.

4.3 Hash-based signatures: Minimal HFB Surface

Hash-based signature schemes (for example, SPHINCS+, XMSS, and LMS)
build security solely from standard hash properties (preimage resistance, second-
preimage resistance, and—where required—collision resistance), using one-time/one-
time-like chains and Merkle trees. This reliance on only hash assumptions yields
a minimal algebraic attack surface among the post-quantum families and avoids
number-theoretic or lattice assumptions entirely.

Merkle authentication paths are produced by iteratively hashing concate-
nated sibling nodes up to the root using a cryptographic hash function H; veri-
fication recomputes the path and checks equality with the public-key root node.
Formally, given leaf L and authentication siblings Sy, . .., S} the root is computed
by R = H(---H(H(LS)S2)), and the verifier accepts if the recomputed
root equals the public key root.

Winternitz one-time signatures (W-OTS+) are vector-valued chains. Key
generation samples [secret seeds (x1,...,7;) and computes chain endpoints
pk; = F“~(x;), where F is an iterated hash/compression and w is the Win-
ternitz parameter. The message digest (plus checksum) is encoded in base-w
to select which chain positions are revealed; a verifier advances each revealed
chain element to its endpoint and authenticates the aggregated endpoints via
the Merkle path [14].

SPHINCS+ is a stateless, hypertree-based construction combining many
FORS trees, W-OTS+ chains, and layered Merkle trees; it was standardized
(as SLH-DSA) by NIST and offers a conservative, stateless alternative to state-
ful schemes. XMSS and LMS (and their hierarchical variants) are stateful and
are profiled in NIST SP 800-208: they require application environments that can
enforce strict private-state management such as HSMs or dedicated firmware
signing workflows [11[12].

Minimal attack surface — and remaining pitfalls. Because security reduces to
well-studied hash properties, the mathematical attack surface is small compared
with algebraic constructions. Nevertheless, implementations must still address
practical HFBs and side-channel /fault vectors:

— State management (XMSS/LMS). Stateful schemes are vulnerable to catas-
trophic key reuse if state updates are lost or mis-synchronized; secure deploy-
ment requires atomic state updates and audited backup/restore procedures.

— Side channels and constant-time. SPHINCS+ is stateless but still requires
constant-time kernels, robust parsing, and secure randomness/seed handling
to avoid timing or microarchitectural leakage.

— Fault injection. Faults that induce inconsistent intermediate W-OTS+ val-
ues, Merkle node corruptions, or truncated recomputation can enable forg-
eries or key recovery; such attacks have been demonstrated against SPHINCS-
like designs and adapted to XMSS.

Hard-To-Find Bugs in Post-Quantum Cryptography 11

4.4 Comparison Summary Across PQC Families

The manifestations of HFBs differs sharply across PQC families. These differ-
ences can be traced directly to the mathematical foundations and implementa-
tion requirements of each scheme type. Table[|provides a structured comparison.

Table 1. Comparison of HFB Characteristics Across PQC Families

Dominant .
Sche.me Mathemat- |Primary HFB Types Underlying Causes /
Family ies Remarks
Timing side-channels (NTT
reductions, coefficient com-|Complex arithmetic
Lattice-based |Polynomial |pression); with secret-dependent
yber, rings, ,|Precision ivergences|branches; reliance on
Kyb ing NTT,|Precisi diverg b h li
Dilithium, discrete Gaus-|(floating-point sampling, |floating-point units;
Falcon) sian sampling |Falcon); immaturity of imple-
Oracle leaks from early-exit|mentations
logic.
Finite-field operations
Code-based |Linear alee- Memory-safety bugs (buffer|are inherently constant-
(HQC, Clas-|bra over ﬁn%te overflows, API misuse); time; HFBs mainly stem
sic Mc’Eliece) fields (F,) Rare fault-injection vulnera-|from conventional pro-
a bilities. gramming errors rather
than mathematics
Bit-oriented, deter-
Cryptographic State-management —— m.lmstm . f:omputatlons
Hash-based |hash func- (key reuse in stateful vari with minimal math-
(SPHINCS+, |tions, Merkle ant}s/)' Fault injection in tree ematical complexity;
XMSS, LMS) |trees, hash !) HFBs largely software-
. structures. . . .
chains engineering or physical-
attack induced

In summary, lattice-based schemes exhibit the richest and most diverse HFB
profiles, with multiple categories of subtle mathematical and platform-dependent
vulnerabilities. Code-based schemes show far fewer cryptographic-specific HFBs,
with their risks being dominated by classical implementation errors. Hash-based
schemes present the smallest mathematical HFB surface, with residual issues
restricted to state management and specialized fault attacks.

More information on mitigating these HFBs possibly present in current and
future implementations are described in the Appendix [B]

12 M. Steinbach et al.
5 Implementation stats and results

To detect HFBs we provide wycheproof—pq(ﬂ an extension of the Wycheproof
testing framework for PQC. We developed a C-based test harness and a struc-
tured methodology for generating KATs, malformed vectors, and adversarial
inputs targeting PQC schemes, directly adressing the risks put forward by this

paper.

5.1 Research and vector generations

The main contribution is the set of vectors targetting ML-KEM, ML-DSA, FN-
DSA, SLH-DSA and HQC specifically;

These vectors are targeted at low occurence HFBs and include prior existing
HFBs found from open source implementations of PQC.

The researched bugs that were identified around 15 examples are documented
methodically and were added to the HFB collection started while working on the
first paper. All validated failures were documented with the structured format
used throughout the study (Specification, Defect, Impact, Code Snippet) so they
can be tracked and reproduced by implementers.

Test generation combined conformance testing with adversarial input craft-
ing:

— Baseline KATs: We integrated official NIST conformance vectors.

— Bug Reproduction: We reproduced known issues from bug research and bugs
in open source PQC libraries such as PQClean, LibOQS / libogs integrations,
TLS stacks that include PQC etc.

— Input Mutation: We systematically crafted edge-case vectors by:

e Bit-flipping signature bytes.
e Introducing non-canonical encodings and redundant padding.
e Creating signatures with single-byte offsets.

5.2 Capabilities

Each KAT encodes one of the HFB classes established in Section dl For each
vector the tests perform:

1. functional verification (expected true/false);

2. negative/over-acceptance checks (vectors that only a lax parser should ac-
cept);

3. timing variability probes (micro-benchmarks around candidate branches com-
piled with realistic optimization flags);

4. cross-platform comparison (same vector executed on x86/ARM builds to
detect precision/FPU differences).

2 wycheproof-pqc repository, with the technical contribution of the paper is available
here: https://github.com/mattc-try /wycheproof-pqc/README.md

https://github.com/mattc-try/wycheproof-pqc/README.md

Hard-To-Find Bugs in Post-Quantum Cryptography 13

6 Conclusion

The transition to PQC introduces a sophisticated and distinct class of implemen-
tation defects, fundamentally diverging from classical schemes where common
carry propagation bugs are nearly absent. The new critical threats are dom-
inated by timing side-channels in polynomial arithmetic (such as conditional
NTT reductions or variable-time division) and precision divergences in floating-
point Gaussian sampling (as documented in FALCON), particularly within lattice-
based constructions (ML-KEM, ML-DSA, FN-DSA) which exhibit the richest
HFB profile.

To counter these evasive, PQC-specific HFBs, we presented a systematic tax-
onomy and released wycheproof-pqc, an open-source extension of the Wychep-
roof test library. This practical artifact provides tailored (KATs) that specifically
incorporate adversarial vectors, timing variability probes, and cross-platform
comparisons to expose these defects, leading to the documentation of 15 vulner-
abilities and establishing PQC-specific KATs as an effective, low-effort defense
mechanism crucial for securing the accelerating PQC deployment roadmap.

6.1 Limitations

— The library and testing results come from HFBs found so far, and thus are
not as complete as the work made on classical HFBs, this library helps with
defense in depth were regular testing fails.

— Some discovered issues require physical side-channel or fault injection to fully
validate exploitability; our KATs detect the software precursors but do not
substitute for full hardware-level validation.

— This should not be the only way to test cryptographic implementations and
should be used along with other methods, as conjectured in the classical pa-
per contribution formal verification would be the best when possible, regular
testing, HFBs for KATs and fuzzing when too complicated or costly.

References

1. Recommendation for stateful hash-based signature schemes. Technical Report
NIST SP 800-208, National Institute of Standards and Technology, 2020.

2. Commission recommendation (eu) 2024/1101 on a coordinated implementation
roadmap for the transition to post-quantum cryptography. Technical Report
2024/1101, European Commission, April 2024.

3. The mathematical foundation of post-quantum cryptography. Research, 2024.

4. Gorjan Alagic et al. Status report on the third round of the nist pqc standardization
process. Technical report, National Institute of Standards and Technology, 2022.

5. Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the inherent
intractability of certain coding problems (corresp.). IEEE Transactions on Infor-
mation theory, 24(3):384-386, 2003.

6. Daniel J. Bernstein et al. Kyberslash: Exploiting secret-dependent division timings
in kyber implementations. 2024. Detailed analysis of timing vulnerabilities in
Kyber’s NTT implementation.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

M. Steinbach et al.

Daniel Bleichenbacher and Thai Duong. Project wycheproof, 2016. Google Security
Blog, December 2016.

. Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of

checking cryptographic protocols for faults. In International conference on the
theory and applications of cryptographic techniques, pages 37-51. Springer, 1997.
Alexandre Braga and Ricardo Dahab. A survey on tools and techniques for the pro-
gramming and verification of secure cryptographic software. In Simpdsio Brasileiro
de Seguranga da Informagao e de Sistemas Computacionais (SBSeg), pages 30—43.
SBC, 2015.

Pietro Bressana, Noa Zilberman, and Robert Soulé. Finding hard-to-find data
plane bugs with a pta. In Proceedings of the 16th International Conference on
emerging Networking EXperiments and Technologies, pages 218-231, 2020.

Sen Deng, Mengyuan Wu, Huixin Dai, et al. Cipherh: Automated detection of
ciphertext side-channel vulnerabilities in cryptographic software. In 82nd USENIX
Security Symposium, pages 289-306, 2023.

Scott Fluhrer and David A. McGrew. Leighton-micali hash-based signatures. RFC
8554, Internet Engineering Task Force, April 2019.

Morgane Guerreau, Ange Martinelli, Thomas Ricosset, and Mélissa Rossi. The
hidden parallelepiped is back again: Power analysis attacks on falcon. IJACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 141-164, 2022.
Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Rijneveld, and Aziz
Mohaisen. XMSS: eXtended Merkle Signature Scheme. RFC 8391, Internet Engi-
neering Task Force, May 2018.

Marc Joye, Michael Tunstall, et al. Fault analysis in cryptography, volume 147.
Springer, 2012.

Matthias J Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers. Im-
proving software quality in cryptography standardization projects. In 2022 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW), pages 19—
30. IEEE, 2022.

Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-quantum
signature scheme through side-channel attacks. In 2021 58th ACM/IEEE Design
Automation Conference (DAC), pages 691-696. IEEE, 2021.

Tanja Lange et al. Pqcrypto: Post-quantum cryptography for long-term security,
2018. EU Horizon 2020 Project ICT-645622.

Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 1997.

Aleksandra V Markelova. Vulnerability of RSA algorithm. In CEUR Workshop
Proceedings, volume 2081, pages 74-78, 2017.

Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44:114-116, 1978.

Puja Mondal, Suparna Kundu, Sarani Bhattacharya, Angshuman Karmakar,
and Ingrid Verbauwhede. A practical key-recovery attack on lwe-based key-
encapsulation mechanism schemes using rowhammer. In International Conference
on Applied Cryptography and Network Security, pages 271-300. Springer, 2024.
Dustin Moody. Nist pqc: The road ahead. Presentation (March 2025), March 2025.
NIST PQC process status, transition guidance highlights, and timelines.

National Institute of Standards and Technology. Module-lattice-based digital sig-
nature standard. Technical Report FIPS 204, U.S. Department of Commerce,
2024.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

Hard-To-Find Bugs in Post-Quantum Cryptography 15

National Institute of Standards and Technology. Module-lattice-based key-
encapsulation mechanism standard. Technical Report FIPS 203, U.S. Department
of Commerce, 2024.

National Institute of Standards and Technology. Stateless hash-based digital signa-
ture standard. Technical Report FIPS 205, U.S. Department of Commerce, 2024.
D. Nguyen and K. Gaj. Floating-point inconsistencies in discrete gaussian sam-
pling. IEEE Transactions on Computers, 2023. Analysis of platform-dependent
floating-point behavior in Gaussian sampling.

Raphael Overbeck and Nicolas Sendrier. Code-based cryptography. In Post-
quantum cryptography, pages 95-145. Springer, 2009.

Oleksandr Potii, Olena Kachko, Serhii Kandii, and Yevhenii Kaptol. Determining
the effect of a floating point on the falcon digital signature algorithm security.
Eastern-European Journal of Enterprise Technologies, 2024. Key recovery attack
using floating-point discrepancies in Falcon.

PQClean Development Team. Pqclean issue #522: Falcon signature inconsistency
across arm platforms, 2023. Documentation of floating-point precision issues in
Falcon implementations.

PQCRYPTO Consortium. Pqcrypto project deliverables, 2018.

Jai Vijayan. Attacker social-engineered backdoor code into XZ Utils.
https://www.darkreading.com /attacks-breaches/attacker-social-engineered-
backdoor-code-into-xz-utils, 2024.

Guillaume Wafo-Tapa, Slim Bettaieb, Loic Bidoux, Philippe Gaborit, and Eti-
enne Marcatel. A practicable timing attack against hqc and its countermeasure.
Cryptology ePrint Archive, 2019.

Zhuang Xu, Owen Pemberton, Sujoy Sinha Roy, David Oswald, Wang Yao, and
Zhiming Zheng. Magnifying side-channel leakage of lattice-based cryptosystems
with chosen ciphertexts: The case study of kyber. IEEE Transactions on Comput-
ers, 71(9):2163-2176, 2021.

A Hard-To-Find Bugs Definition

HFBs in cryptographic software are subtle errors that can compromise system
security. These bugs are challenging to detect due to their low probability of
occurrence and the specific conditions needed to trigger them—conditions that
standard testing methods often fail to cover. Despite their rarity, HFBs can
lead to serious vulnerabilities, such as incorrect cryptographic operations, side-
channel vulnerabilities and private key leakage.

Al

Characterization of HFBs

They are characterized by the following:

1.

Low Probability of Occurrence: Only under rare and specific conditions, such
as unique input combinations, specific sequences of operations, or particular
hardware or timing factors.

. High Complexity and Subtlety: Often result from complex system interac-

tions, subtle hardware behaviors, or intricate algorithmic details, like im-
proper handling of edge cases.

https://www.darkreading.com/attacks-breaches/attacker-social-engineered-backdoor-code-into-xz-utils
https://www.darkreading.com/attacks-breaches/attacker-social-engineered-backdoor-code-into-xz-utils

16 M. Steinbach et al.

3. Difficulty in Detection and Reproduction: Conventional testing methods
struggle to identify these bugs, and without knowing the trick they are hard
to reproduce.

4. Cross-Disciplinary Nature: Addressing HFBs often requires expertise across
multiple areas, including software, hardware, and cryptographic theory, due
to their involvement in various layers of the technology stack.

HFBs are not confined to cryptographic software; they represent a widespread
challenge across the technology sector. For example, Bressana et al. (2020) dis-
cuss the difficulty of detecting subtle data plane bugs in network hardware using
their Portable Test Architecture (PTA), which revealed hidden issues such as
performance degradation under specific traffic conditions [10]. Although their
research focuses on network devices, the challenges they highlight closely mir-
ror those encountered in cryptography: both fields are plagued by bugs that
only manifest under rare conditions, evading traditional testing methods. In
cryptographic software—particularly in public key cryptography (PKC), where
low-level implementation errors in modular and polynomial arithmetic, along
with other subtle bugs, can lead to catastrophic security breaches—the need for
a comprehensive, rigorous verification framework becomes even more pressing.
This paper aims to develop such a framework to systematically identify and
mitigate these elusive vulnerabilities.

A.2 Impact and Exploitability

A.2.1 Impact The impact of bugs is assessed by the severity of the vulnera-
bilities they introduce, enabling developers to prioritize fixes based on potential
damage. Key factors for evaluating impact include: (i) Exposure of sensitive
data, (ii) System integrity compromise, (iii) Exploitability by attackers, and (iv)
Long-term implications for system security. This classification is crucial for un-
derstanding cryptographic risks and underscores the need for expert knowledge
in developing secure systems.

HFBs pose a significant security risk due to their potential exploitability by
attackers. Their elusive nature makes them prime targets for adversaries who
can craft precise inputs or operation sequences to exploit them. This can lead to
severe consequences, such as cryptographic failures, unauthorized data access,
or even private key leakage, compromising the integrity and confidentiality of
secure systems.

A.2.3 Exploitability Given their low probability of occurrence under normal
conditions, such bugs can remain undetected for extended periods. A notable
example is the ROCA vulnerability (CVE-2017-15361), which affected RSA key
generation in Infineon chips used by OpenSSL and other cryptographic libraries.
The flaw in the key generation algorithm allowed attackers to factorize the public
key and recover the private key. Introduced around 2012, it remained undetected
until its discovery in October 2017 [20].

Hard-To-Find Bugs in Post-Quantum Cryptography 17

Moreover, there is an increasing risk of maliciously introduced HFBs, partic-
ularly in environments with frequent and large-scale code contributions, such as
open-source projects. This risk is especially significant for malicious nation-state
actors, who may seek to embed hidden backdoors in software widely regarded as
secure, such as cryptographic libraries, to enable long-term espionage or control
over critical systems. Attackers could intentionally introduce subtle HFBs during
major commits or feature additions, which may evade detection during standard
reviews. A recent example is the 2024 X7 Utils incident, where a malicious actor
used social engineering to gain trust and insert a subtle backdoor into the soft-
ware, potentially allowing unauthorized code execution on Debian machines [32].
These flaws are often masked within complex or large code changes, especially
in low-level languages like C, C++-, and Assembly, which are commonly used in
cryptography implementations for performance reasons. Assembly, in particular,
is still prevalent for critical optimizations, adding to the challenge of detecting
such bugs.

A.3 Hardware-Induced Errors

While our focus is on software HFBs, cryptographic failures can also stem from
hardware-induced errors, which are often indistinguishable from software faults.
Transient faults—such as bit flips in RAM or registers caused by cosmic radia-
tion or electrical interference—can introduce security risks exploitable via fault
injection attacks, as explored in comprehensive analyses of natural and induced
faults |15]. Techniques like voltage glitching and electromagnetic fault injection
can deliberately induce errors, potentially leaking sensitive data, such as private
keys through faulty signature generation, as demonstrated in theoretical models
of random hardware faults [§].

Though mitigating hardware-induced errors is a crucial research area, it is
beyond the scope of this study. Addressing these risks requires error detection
mechanisms, hardware-level protections, and resilient cryptographic implemen-
tations.

B Countermeasures for Hard-to-Find Bugs in PQC

Mitigating HFBs in Post-Quantum Cryptography implementations requires a
defense-in-depth strategy that transcends simple conformance testing. The coun-
termeasures detailed in this section address vulnerabilities at the algorithmic,
microarchitectural, and compiler levels. These strategies are essential because,
as established in this work, the mathematical novelty of PQC schemes intro-
duces HFB profiles distinct from classical cryptography. Effective hardening de-
pends not on the assumed security of the mathematical primitives alone, but on
engineering practices that eliminate observable, secret-dependent variations in
implementation behavior. This section provides a clear engineering roadmap for
achieving robust and secure PQC software.

18 M. Steinbach et al.

B.1 Systematic Hardening for Lattice-Based Cryptography

B.1.1 Side-Channel Protection The primary goal of side-channel protection
is to eliminate any correlation between secret data and observable non-functional
properties of the implementation, such as its execution time, power consumption,
or memory access patterns.

A core principle of side-channel hardening is to ensure all arithmetic opera-
tions execute in constant time. Secret-dependent branching and variable-latency
machine instructions are major sources of timing leakage. For example, integer
division instructions like idiv on x86 architectures have input-dependent la-
tencies. As demonstrated by the KyberSlash attacks, this specific vulnerability
can be exploited to recover the private keys of Kyber. To prevent this, such
operations must be replaced with constant-time reduction algorithms, such as
Montgomery reduction or a branch-free implementation of Barrett reduction,
which use a fixed sequence of multiplications and shifts.

Another critical vulnerability arises from conditional branches within core
algorithms. In Number Theoretic Transform (NTT) operations, a naive modular
reduction like if (t >= q) t -= q; creates a timing vulnerability that leaks
information about secret coefficients. This must be replaced with a branch-free
equivalent that uses bitwise masking to achieve the same result in a constant
number of cycles.

To thwart attacks based on memory access patterns or power analysis, the
relationship between secret data and its physical representation must be broken.
This can be achieved through blinded memory access techniques. One such tech-
nique is arithmetic masking, where polynomial coefficients are combined with
fresh random values before processing. The computation is performed on this
masked data, and the mask is removed only at the end. Another technique is to
randomize the execution order of independent operations, such as the sequence
of NTT butterfly calculations, which disrupts an attacker’s ability to correlate
power traces with specific computations.

Samplers that use rejection loops are another source of leakage, as the num-
ber of iterations can depend on secret data. To prevent this, discrete Gaussian
samplers should be implemented using constant-time algorithms. Methods based
on precomputed Cumulative Distribution Tables (CDT) can be made secure by
ensuring they execute with a fixed number of iterations, thereby making their
timing independent of the values being sampled.

B.1.2 Oracle Attack Prevention Oracle attacks exploit logical flaws where
an implementation’s response reveals information about the correctness of an
internal computation. This is often achieved by measuring timing variations
caused by early-exit logic in verification routines.

To prevent such attacks, all verification steps must execute in constant time.
The decapsulation logic, for instance, must not terminate prematurely based on
secret-dependent checks. A loop checking the validity of polynomial coefficients
must not use a break statement upon finding an invalid coefficient, as this creates
a clear timing difference. The correct approach is to accumulate failure flags using

Hard-To-Find Bugs in Post-Quantum Cryptography 19

bitwise operations over the entire set of coeflicients and perform a single check
only after the loop has completed.

Furthermore, an implementation’s observable response must be uniform across
all failure conditions. This involves returning a generic error message regardless
of the specific internal check that failed. Normalizing the timing of rejection re-
sponses, potentially by adding a random delay, also helps prevent an attacker
from distinguishing different error pathways and gaining information about the
secret data.

B.1.3 Mitigating Floating-Point Vulnerabilities in Falcon A primary
issue is precision divergence. Floating-point operations are not fully standardized
across different hardware architectures, such as x86 and ARM, which can lead
to minute, non-deterministic differences in computation. It has been shown that
these divergences can be collected and exploited as an oracle to recover a Falcon
secret key. One mitigation is to replace the floating-point logic entirely with
deterministic, integer-only sampling methods. A complementary approach is to
incorporate rigorous cross-platform validation into testing pipelines, ensuring
that signatures generated for identical inputs are bit-for-bit identical across all
supported architectures.

Another vulnerability is mantissa leakage. The Hamming weight of the man-
tissas of floating-point values can be leaked through physical side channels like
electromagnetic emissions. This information can be used in attacks to recover the
FFT coefficients, which ultimately leads to key recovery. To mitigate this threat,
implementers can use fixed-point arithmetic instead of floating-point, or apply
masking schemes to the FF'T coefficients to decorrelate the mantissa values from
the underlying secrets.

B.2 Systematic Hardening for Code-Based Cryptography

A key area of concern is decoder hardening against reaction oracles. Iterative
decoders may have iteration counts or memory access patterns that depend on
the secret error vector, creating an observable reaction that leaks information. To
mitigate this, one must enforce a fixed-time decapsulation wrapper that ensures
a constant amount of work is performed, or design decoders with a provably
fixed iteration count. The correct implementation of a Fujisaki-Okamoto (FO)
style transform can also mask decryption failures, but this is only effective if the
re-encryption path is also fully protected from side channels.

Sampler protection is critical. Samplers used for generating constant-weight
vectors can leak information through variable-time rejection loops or data-dependent
shuffles. Implementations must adopt constant-iteration sampling algorithms or
use a fixed-iteration wrapper around rejection-based samplers. Any shuffling op-
erations must be implemented in a data-independent manner.

The finite-field arithmetic in code-based schemes, while simpler than in lat-
tices, can still be a source of leakage. Table-based implementations are partic-
ularly vulnerable to cache-timing attacks and should be replaced with bitsliced

20 M. Steinbach et al.

or purely arithmetic implementations. It is also important to ensure that any
polynomial reduction is performed using constant-time algorithms.

Finally, the use of structured codes, such as quasi-cyclic codes, introduces
the risk of algebraic weaknesses. While these codes reduce key sizes, they can
create vulnerabilities. Implementations should therefore include tests to detect
and filter any weak keys and should use conservative parameter choices to limit
the effectiveness of structure-specific attacks.

B.3 Compiler-Level and Microarchitectural Protections

Even a securely written implementation can be undermined by compiler opti-
mizations or underlying hardware behaviors.

At the hardware level, microarchitectural hardening is necessary. This in-
cludes inserting serialization instructions, such as lfence on x86, to prevent
out-of-order execution from creating timing leaks. Where feasible, disabling dy-
namic voltage and frequency scaling (DVFS) during cryptographic operations
can ensure a more stable timing baseline, making anomalies easier to detect.

At the build level, developers must enforce strict code generation constraints.
This involves using compiler flags that ensure predictable behavior, such as
-fwrapv for defined integer overflow. For security-critical functions, it may be
necessary to use lower optimization levels or specific function attributes to pre-
vent the compiler from making transformations that inadvertently introduce vul-
nerabilities, such as reintroducing a division instruction where a constant-time
reduction was intended.

Lastly, secure memory management is crucial. Sensitive data such as private
keys and intermediate states must be securely wiped from memory after use,
typically by XORing the data with randomness. Using hardware memory pro-
tection features, like guard pages via mprotect, can also help prevent accidental
reads or writes outside of intended buffers, mitigating a large class of common
programming errors.

	Hard-to-Find Bugs in a Post-Quantum Age

